人工智能如何提升大数据存储(人工智能提升管理效率)

浮光掠影知识网SEO专员

我们的都知道随着大数据的大量来源以及企业可用数据量的增加,存储容量规划已成为存储管理员的问题。据估计,每天产生2.5万亿字节的数据。现在,如果以神经元计算的话,那就是相当于2.5亿个人类大脑的海量数据。而且,相同的估计表明,全球总数据的90%是从2016年到2018年生成的。

人工智能如何提升大数据存储

人工智能如何提升大数据存储(人工智能提升管理效率)

可以简单地说,每天生成越来越多的数据,这正增加了存储工作负载的规模和复杂性。但是,人工智能可以拯救存储管理员,帮助他们高效地存储和管理数据。通过使用AI数据存储,供应商和企业可以将存储管理提升到一个新的水平。而且,存储管理员可以找到他们目前正在努力管理的指标的解决方案。

存储管理员需要努力的主要指标

存储管理员在管理存储问题时面临一些挑战。而且,如果他们克服了这些挑战,将帮助他们在数据存储的各个方面之间找到适当的平衡,例如在哪里分配工作负载,如何分配工作负载以及如何优化堆栈等等。

一般而言,吞吐量是指处理某事物的速率。在网络级别,吞吐量的度量单位是Mbps(兆位/秒),而在存储级别,吞吐量的度量单位是MB /秒(兆字节/秒)。由于一个字节等于八兆位,因此生产率在存储级别上提高了。并且,变得难以管理提高的生产率。

1. 延时

延迟是服务器完成请求所花费的时间。关于存储,这是指满足单个存储块的请求所花费的时间。存储块或块存储是将数据存储在卷中的块。纯延迟不受吞吐量影响,但是如果单个块请求很大,则应用延迟可能会随着吞吐量的增加而偏离。

2. IOPS(每秒输入/输出操作)

IOPS是指存储堆栈每秒可以处理的离散读写任务的数量。存储堆栈是一种允许过程调用的数据结构。这意味着将多个过程彼此存储在堆栈中,然后在调用和返回的基础上一个接一个地执行所有过程。例如,如果一个过程被调用,它将被执行,然后返回,以便在堆栈中调用下一个过程。而且,在谈论IOPS时,基础输入/输出任务可以达到存储系统的堆栈限制。例如,读取一个大文件和多个小文件可能会对IOPS产生影响。由于读取单个大文件仅需要执行一个读取任务,因此可以以较高的速度执行它,而另一方面,读取多个文件的速度非常慢,因为需要执行许多读取任务。

文章版权声明:所有来源标注为浮光掠影知识网(fgly.cn)的内容版权均为本站所有,若您需要引用、转载,只需要注明来源及原文链接(https://www.fgly.cn/archives/721.html)即可。

发表评论

表情:
评论列表 (暂无评论,2290人围观)

还没有评论,来说两句吧...

取消
微信二维码
微信二维码
支付宝二维码